## Thursday, March 12, 2015

### What Happens in a Math Class?

I think there are two dramatically different perceptions about what is supposed to happen when students are doing mathematics, be it in class or when they are doing their homework. I think this difference colors the way mathematics learning and teaching is perceived and causes considerable confusion when students, teachers and parents discuss progress. One point of view is that the goal is to get the correct answer to the problems posed, basically that the problem is a “test” to see if the solver can get the correct answer. The other belief is that the problems have been posed so that the solver will learn something by working on the problem, and that working on the problem will make the solver better at doing math.
I was observing a first grade mathematics lesson last week and students were learning about how to use “near doubles.”  Essentially this was a formal lesson that encouraged students to do problems like 13+14 by thinking that twice 13 is 26 so 13 +14 =27, or one more than 26. Or they could reason that twice 14 was 28 and so the sum would be one less than 28. As I observed, I thought about how wonderful it was that these students were learning about the structure of addition, as well as a handy method for finding sums that many adults use regularly, rather than just memorizing a rule for adding two digit numbers. This has to empower them as they learn more and more mathematics.
I walked around and observed that virtually all students got the correct answers to the addition problem. I also observed that many were doing it backwards, they were writing down the sum and then the doubles fact that would help them get that sum.  As in the example above, the student solves 13+14 = 27 first, and then the student solves it backwards, using 13+13 = 26 (a well-known doubles fact) and then 26+1 = 27.  Some had the correct sum but a doubles fact that did not make sense to me, or was not a doubles fact but some other fact of addition. (For example, they might have 10+10=20 as their doubles fact. While this can be used to determine the sum and uses doubles, it shows me that the student has not grasped the concept of near doubles)
My take away from this observation is that often students are not focused on anything other than getting the right answer, one way or another, while the point of the lesson was to make the computation easier as well as more meaningful by learning about the structure of addition instead of just memorizing a rule. In fact, using doubles makes a boring addition problem into an interesting challenge.  It then struck me that there is a dichotomy in the world of mathematics education that has serious consequences throughout the learning experience of an individual. I would like to think that the learner was always focused on what the point of the lesson was, on what the creator of the lesson wanted the user of the lesson to learn and understand at the end of the lesson. I suspect that the learner is often not even considering that but is focused on answer getting as opposed to finding a really great way to get to that answer. I think many parents also have that same belief, even without realizing it. If their child gets right answers on tests, they are happy. And what could be wrong with that?
For one thing, the student who only has one way to approach many problems may find it boring, and may not realize that there are techniques needed later that benefit greatly from thinking about a concept in many different ways. An example in later mathematics that comes to mind is the many different ways to create a graph of a line, or solve a system of equations. The student who has mastered only one way is severely handicapped if the situation does not fit comfortably into the solution method they have memorized.  For another, the student who learns one way to do it may find math to be dull and uninteresting, while the student who explores many different ways of looking at a problem will, I believe, find mathematics as an outlet for creativity and inventive thought. I believe that students who enjoy what they are learning, understand that they have a certain amount of control over how they proceed, and know that there is a utility to what they learn, will work much harder and learn more than those who just do it on order to get the right answer and therefore  a good grade.
This explains something that has troubled me for some time. I frequently hear from parents that their child is not challenged by the curriculum that is being offered in their school. When I have looked at the curriculum I find that it is often very rich and full of many challenges. Perhaps the reason for this disconnect is that when the student looks at  the material, the only thing the student is thinking about is how can I get this done and get a right answer, while I am looking at how many different things a student can learn from the variety of approaches taken.
The problem is, that if I am right about this, it does not give me an immediate plan of action to correct it and we educators believe that it is our job to correct things that are not working. Perhaps that is food for another blog, but at the least I am interested in you comments about my thoughts.

## Tuesday, February 10, 2015

### Thoughts on Formative Assessment

It has been many months since I have written something here. I am no longer in the classroom observing and noticing and so am not sure I have things to contribute I haven't already written.

Last week I observed some classes and I noticed something, something I think is worth sharing.
This was a second grade class in a very good school, with a good teacher. The students were capable and attentive. They were learning addition strategies. The context was fascinating to me.

Each student had a page with photographs of fish. They were excellent photographs and the page was welcoming to a reader. Next to each fish was an identifying letter, from A to K, the length of the fish in inches and the weight of the fish in pounds.

The teacher posed the following question:"If fish E ate fish B, how much would fish E weigh?"  Students thought for a moment and then the class decided that the appropriate strategy was to add the two weights. The teacher was diligent about units, so when a student said add 4, she admonished the student to say 4 what, until the student said 4 pounds. I really liked this aspect of the activity. It emphasized the importance of units as well as reminding students they were talking about weight.

They then did another problem just like it. This was followed by the following question, " If fish F ate a fish and then weighed 64 lbs. what fish did fish F eat?" I was pleased with the direction of the discussion, and especially impressed when many of the students quickly answered the question correctly.